
Sustainable City Design with Algebra
Inquiry Framework
Question Framework
Driving Question
The overarching question that guides the entire project.How can algebra, specifically systems of linear equations, be utilized to design a sustainable city and solve real-world urban planning challenges?Essential Questions
Supporting questions that break down major concepts.- How can linear equations be used to model and solve real-world problems in urban planning?
- In what ways can the principles of algebra contribute to designing a sustainable city?
- How do systems of equations help in making decisions regarding city infrastructure and resource allocation?
Standards & Learning Goals
Learning Goals
By the end of this project, students will be able to:- Students will understand how to apply systems of linear equations to solve real-world problems related to urban planning.
- Students will develop skills in solving systems of linear equations both algebraically and graphically.
- Students will explore the role of algebra in modeling and designing elements of a sustainable city.
- Students will enhance their critical thinking and problem-solving skills by making decisions on city infrastructure and resource allocation using algebraic methods.
Common Core State Standards
Common Core State Standards for Mathematical Practice
Entry Events
Events that will be used to introduce the project to studentsMystery City Blueprint
Students receive a mysterious blueprint of a fictional city that suffers from overpopulation, pollution, and traffic congestion. They're challenged to use algebra to propose sustainable solutions, sparking curiosity about how math applies to real-world city planning issues.Portfolio Activities
Portfolio Activities
These activities progressively build towards your learning goals, with each submission contributing to the student's final portfolio.Blueprint Deciphering: Understanding City Variables
Students will begin by understanding the mystery blueprint and identifying key variables impacting urban planning such as population, traffic flow, and pollution. This activity will lay the foundation for identifying variables in systems of linear equations.Steps
Here is some basic scaffolding to help students complete the activity.Final Product
What students will submit as the final product of the activityA list of urban planning challenges and their corresponding variables to be used in subsequent activities.Alignment
How this activity aligns with the learning objectives & standardsAligns with the standard 8.EE.8b as students identify variables that will be part of systems of equations for solving urban planning challenges.Equation Formulation Challenger
Students will learn how to translate the identified city variables into mathematical expressions and formulate linear equations that represent the challenges. This strengthens algebraic thinking and sets the stage for solving systems of equations.Steps
Here is some basic scaffolding to help students complete the activity.Final Product
What students will submit as the final product of the activityA set of linear equations that model relationships between urban variables created by each student.Alignment
How this activity aligns with the learning objectives & standardsThis activity aligns with 8.EE.8 by focusing on creating linear equations based on real-world scenarios.Graph-It-Yourself: Visualizing Solutions
Students will graph the linear equations they've formulated to visualize possible solutions for the city's problems. This activity focuses on estimating solutions graphically and understanding intersecting solutions within urban contexts.Steps
Here is some basic scaffolding to help students complete the activity.Final Product
What students will submit as the final product of the activityA series of graphs showing the intersections of linear equations, interpreted as urban planning solutions.Alignment
How this activity aligns with the learning objectives & standardsThis aligns with 8.EE.8b and MP.4, focusing on solving systems graphically and modeling mathematical solutions.Algebraic Solution Innovator
Students will solve the systems of equations they previously visualized, using algebraic methods to find precise solutions to the urban planning problems. This task emphasizes algebraic proficiency and precision in solving urban issues.Steps
Here is some basic scaffolding to help students complete the activity.Final Product
What students will submit as the final product of the activitySolved systems of equations with clear algebraic solutions addressing urban planning challenges.Alignment
How this activity aligns with the learning objectives & standardsDirectly addresses 8.EE.8b, focusing on algebraic solutions of systems of equations.Sustainable City Architect: Final Project
In this culminating activity, students will apply all their learning to design a blueprint for a sustainable city, using their solved systems of equations to model and make decisions on infrastructure and resource allocation.Steps
Here is some basic scaffolding to help students complete the activity.Final Product
What students will submit as the final product of the activityA detailed sustainable city blueprint with mathematical justification for urban solutions.Alignment
How this activity aligns with the learning objectives & standardsEncompasses standards 8.EE.8, MP.4, and MP.1 by integrating problem-solving with algebraic modeling and real-world applications.Rubric & Reflection
Portfolio Rubric
Grading criteria for assessing the overall project portfolioSustainable Urban Planning with Algebra: Assessment Rubric
Understanding of Concepts
Evaluates the student’s comprehension of systems of linear equations and their use in real-world problem-solving.Identification of Variables
Identifies relevant variables affecting urban planning issues that can be modeled using systems of equations.
Exemplary
4 PointsIdentifies a comprehensive and insightful set of variables, demonstrating a deep understanding of urban planning issues and their algebraic representations.
Proficient
3 PointsIdentifies a sufficient set of relevant variables, showing a solid understanding of the relationship between real-world issues and algebraic modeling.
Developing
2 PointsIdentifies some relevant variables, but lacks depth or misses key elements necessary for complete algebraic modeling.
Beginning
1 PointsStruggles to identify relevant variables, exhibiting minimal understanding of the connection between real-world challenges and algebraic equations.
Construction of Equations
Ability to construct accurate linear equations to model relationships between urban planning variables.
Exemplary
4 PointsConstructs clear and precise linear equations that effectively model complex relationships, demonstrating innovative algebraic thinking.
Proficient
3 PointsConstructs accurate linear equations that appropriately model the identified variables and their interactions.
Developing
2 PointsConstructs some accurate equations, though there may be inconsistencies or missing elements in the modeling.
Beginning
1 PointsStruggles to construct equations or creates largely inaccurate representations of the urban planning scenarios.
Graphical Solutions
Effectiveness in plotting linear equations and interpreting their intersections to find solutions.
Exemplary
4 PointsPlots equations with precision and insightfully interprets intersections, providing comprehensive and well-reasoned solutions to urban challenges.
Proficient
3 PointsAccurately plots equations and interprets intersections to find viable solutions, demonstrating clear understanding of graphical methods.
Developing
2 PointsPlots equations with mixed accuracy and has difficulty interpreting intersections effectively to find solutions.
Beginning
1 PointsStruggles with plotting equations and interpreting intersections, showing minimal understanding of graphical solutions.
Algebraic Solutions
Proficiency in using algebraic methods such as substitution and elimination to solve systems of equations.
Exemplary
4 PointsUtilizes algebraic methods with a high level of proficiency, providing clear and thorough solutions that effectively address urban problems.
Proficient
3 PointsUses algebraic methods proficiently to solve systems accurately, supporting urban planning solutions.
Developing
2 PointsAttempts to use algebraic methods but with limited success in achieving accurate solutions.
Beginning
1 PointsStruggles with employing algebraic methods, resulting in incomplete or inaccurate solutions.
Application and Innovation
Assesses the student’s ability to apply algebraic concepts creatively to develop realistic urban planning solutions.Creativity in Design
Designs innovative and sustainable city solutions using algebraic models.
Exemplary
4 PointsDemonstrates exceptional creativity and originality in city blueprint design, integrating algebraic solutions for sustainable development.
Proficient
3 PointsShows creativity in designing a sustainable city with effective use of algebraic models.
Developing
2 PointsDisplays some creativity in design but relies heavily on standard solutions without substantial algebraic application.
Beginning
1 PointsStruggles to design creative or realistic solutions, showing minimal application of algebraic concepts.
Justification and Presentation
Ability to justify planning decisions through mathematical reasoning and present solutions effectively.
Exemplary
4 PointsProvides insightful and thorough justification of planning decisions with strong mathematical reasoning, and presents solutions in an engaging and informative manner.
Proficient
3 PointsJustifies planning decisions logically with adequate mathematical reasoning, and presents solutions clearly.
Developing
2 PointsAttempts to justify planning decisions but with limited mathematical reasoning, resulting in unclear presentation.
Beginning
1 PointsLittle to no justification or presentation of planning decisions, lacking adequate mathematical support.